Using Association Rules for Fraud Detection in Web Advertising Networks
نویسندگان
چکیده
Discovering associations between elements occurring in a stream is applicable in numerous applications, including predictive caching and fraud detection. These applications require a new model of association between pairs of elements in streams. We develop an algorithm, Streaming-Rules, to report association rules with tight guarantees on errors, using limited processing per element, and minimal space. The modular design of Streaming-Rules allows for integration with current stream management systems, since it employs existing techniques for finding frequent elements. The presentation emphasizes the applicability of the algorithm to fraud detection in advertising networks. Such fraud instances have not been successfully detected by current techniques. Our experiments on synthetic data demonstrate scalability and efficiency. On real data, potential fraud was discovered.
منابع مشابه
A New Memory Efficient Technique for Fraud Detection in Web Advertising Networks
The advertising network considered as the middle man in web advertising between advertisers and publishers. This paper presented an intelligent and memory efficient Fraud detection technique with intelligent classification engine to be used by the advertising networks to scan clicks and impressions offline streams happen on publisher side for the purpose of detecting click fraud and impression ...
متن کاملHide and Seek: Detecting Hit Inflation Fraud in Streams of Web Advertising Networks
As the Internet continues to grow, the Internet advertising industry flourishes as a means of reaching the appropriate market segments. Internet advertisers provide the monetary incentive for Internet publishers to display advertisements on their Web sites. Internet advertisers and publishers contract through a commissioner that takes care of the accounting issues, and earns a commission on the...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملSLEUTH: Single-pubLisher attack dEtection Using correlaTion Hunting
Several data management challenges arise in the context of Internet advertising networks, where Internet advertisers pay Internet publishers to display advertisements on their Web sites and drive traffic to the advertisers from surfers’ clicks. Although advertisers can target appropriate market segments, the model allows dishonest publishers to defraud the advertisers by simulating fake traffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005